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We propose an algorithm to solve a system of partial differential
equations of the type u {x, 1) =F{x, t, v, u,, u,_ . u,, . u,.,)in1+1
dimensions using the method of lines with piecewise ninth-order
Hermite polynomials, where u and F are N-dimensional vectors. Non-
linear boundary conditions are easily incorporated with this method.
We demonstrate the accuracy of this method through comparisons of
numertcally determined solutions 1o the analyticad ones. Then, we apply
his algorithm 10 a complicated physical system involving nonlinear and
nonjocat strain forces coupled to a thermal field.  «© 1994 Agadensic Press,

inc.

1. INTRODUCTION

Many physical phenomena can be described by partial
differential equations (PDEs) such as Maxwell's equations,
Schradinger’s equation, and Einstein's equations. However,
very few analylic solutions of these equations can be
obtained il the system of PDEs involves nonlinearities.
Therefore, numerical methods play a crucial role in
approximately solving these equations.

The most naive algorithm for solving systems of non-
linear PDEs is to reduce the equations to a set of ordinary
differential equations (ODEs) by the finite difference
method. viz., to utilize {inite differences to evaluate spatial
derivatives approximately [[17. In order to obtain solutions
of high accuracy, the discretized spatial intervals must vary
with time, which makes the application of the algorithm
very difficult. Bven if this dilficully can be overcome, the
numerical solutions in many cascs will not be acceptable; a
simple analysis of the intrinsic difficulties of evaluating
fourth-order spatial derivatives over an interval of time is
provided in Appendix A.

To overcome these difficultics, the method of lines
has been developed for solving the following (1+1)-
dimensional system [2],

dulx, t)
o
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with the initial condition
u(x, t=0)=1Fx) (2)
and linear boundary conditions

o u+ ffu, =17, al x=ux,

(3
o0+ flhu, =1, at

N=X,.

Here u, F, T are N-dimensional vectors; «,, a5, f,, B1. ¥,
and y, are N x N constanl matrices; x, and x, correspond
to the left and right boundaries, respectively. However, this
algorithm is inapplicable for PDE systems which contain
high-order spatial derivatives or have nonlinear boundary
conditions. The goal of this article is to propose a variant
method of lines to solve these types of systems,

Our paper is organized as follows: First we present the
details of the variant algorithm. Then, we test the algorithm
by comparing our numerical solutions of systems of PDEs
having a high-order spatial derivative to the analytic
ones—excellent agreement is found. In Section 3, we apply
the algorithm to a nonlinear, nonlocal physical system
which describes a strain field coupled with a thermal field to
model a first-order structural phase transition of 141
dimensions [3]. We close this article by a short conclusion.

2. ALGORITHM

The gquotiem difference algorithm can have severe dif-
ficultics providing accurate cvaluations of the high-order
spatial derivatives required to solve PDEs as time 7 evolves
(a simple analysis is given in Appendix A). To overcome
these difficultics, we introduce the variant method of lines
with piecewise ninth-order Hermite pelynomials to solve
the system of PDEs,

dulx, 1)

=F(x, Lbun,u, 0. U, .. 4
S L e U ) (4)
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with the initial condition

u(x, 0)="f(x) (5)

and the (potentially nonlinear) boundary conditions
Vilxp, b, ug,u,, )=0 (6)
Wilxg, b0b 0, 0, )=0 (7)

where u, F, f, V.., and W,. are N-dimensional vectors, and
i"=1, 2. We utilize piecewise ninth-order Hermite polyne-
mials to represent u(x, ) in a spatial approximation; ie., we
use the polynomials P} {x) to fit the function u(x, ¢) locally
in space. In this approximation, we break up space into
M — 1 intervals whose boundaries, so-called knots, are x =
X, <Xy - X, (2, =x, and x,, = x,); the polynomials
P (x), Pi(x) (1<i< M), and P,{(x) are nonzero only
on the intervals x, < x<x,, ;i €x<£x,, ,and xy ;€
X% x,,, respectively. The nonzero sectors of R?l.(x) are
ninth-order polynomials which have C,-continuity and
satisfy

% Pi(x) - w: O i G
at the knots; the explicit forms of Pj(x) are shown in
Appendix B. Thus, in our spatial approaximation

i+1 4

u(x, )= 3 ¥ Cul1) Pix)

=i j=0

(9)

on the interval x, < x <Xx,,,, where i < M — 1. Because the
nonzero part of PJ?,(x) is localized on one or two intervals,
the spatial approximation of u(x, {} can be written as

M 4
u(x,7)=73 ¥ C,(r) P}(x) (10)
i=1 j=0
where C, (1) is the approximation of jth derivative of u(x, )
at x=x,.

If the distance between the knots is sufficiently small, the
approximation will be quite good. The selection of the
knots, in general, depends on the characteristic length of the
physical system which one is studying, such as the width of
an interface or a typical domain size. The distances between
the knots can be uneven, but usually should be smaller than
the characteristic length. One should always keep decreas-
ing or increasing these distances until a converged solution
is obtained.

The coefficients of the trial solution are obtained so that
approximation satisfies Eq. (4) at the SM — 4 points {g,,}
which are distributed uniformly between the knots.! To give

'A better way to select {g,} is the collocation method, viz., use
Gaussian points as the {g,,} in each subinterval. However, this method
cannot easily be implemented to solve the problem discussed in Section 3,
owing to the differing orders of the strain and temperature PDEs.
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an explicit form for {g,,}, we define the following numbers:
B =5+8y,, =0, and n,, =n+n;, where i=1, .,
M — 1, and 3 is even number. Thus, {g,,} are given by
Gran =X+ (X101 —x;}/2n;, Giv1+m=G;en + hy/ni,
(11)

where h,=x,,;—x; and j=1, .., n/— 1. With the defined
{g..},» we can obtain the coefficients C; by solving the
ordinary differential equations,

M 4 dc!
Z Z Elpfn(qm)

i=1 j=0

= F(qm! t9 u(qnn t)’ u.\'(q”‘!’ t)’ b (]2}

WG, 1))

form=1,. .. 5M—4andi=1, .., M—1. Thisis a system of
N(5M—4} ordinary differential equations in 5NM
unknown coefficient funcions C;;. The number of unknown
coefficients can be reduced to N(5M —4) by using the 4N
boundary conditions given in Egs. (6) and (7) to eliminate
4N coefficients. As a result, we have N(5M — 4) unknown
variables and the same number of equations, and thus the
PDE system has been reduced to an ODE system with the
following initial conditions:

_ 2'u(x, 0)

Cy(0)=— (13)

X=X

For convenience, Eq. (12) can be written in a compact
form,

dC
—=a""B(1, ),

p (14)

with the initial conditions Eq. (13}, where C is a vector of
coefficients of length N(3M —4). o is a N(5M —4) by
N(5M —4) sparse malrix, whose nonzero clements are
Pi{qm}

Now consider one of the simpiest cases—N =1 and the
boundary conditions Eqgs. (6} and (7} are

u{x, z)zu.\'x(x: I)ZO at x=xLand Xg. (15)
Equation (12) reduces to (m=1, .., SM —4)
M 4 dc..
Y —* Pilg,)
;gl j=0 e’
= F(qm! t’ u(qm, i}’ ux(qm! t)! A ux_rx.r(qma I)) (16}

with C(1) = Ci12(t) = Cpyolt) = Cye2{t)=0. The sparse
matrix . is
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(Pl(a) PL(a) Palg) Phla)
P?](‘Is) P?1(Q5) P31(f15) sz(‘?s)
0 0 0 sz(‘?ﬁ)
o = 0 0 ] P?}z(qm)
\; 0 0 0
0 0 0 0
L 0 0 0 0

with a bandwidth of 10. The vector C is

C= £C11, ClJa C14, Czos ) C24, ey CMI! CM3’ CM4:|T°
(18)

and the vector B on the right-hand side of Eq. (14)is

) F(Gsas_ss ]]T
(19}

B=[F(g, ) Flga, ) oer FGsps_s55 e

To test this algorithm we have numerically solved the
linear equation

(20)

My — Uy — My + Uiven = 0

with the boundary condition Eq.(15) {x,=—L and
Xg= + L) and the initial conditions

u(x, 0) =sin (i (x— L)),

0.2

ux,t)

0.1

-10 0 10
X

FIG. 1.

YAO AND GOODING

P?u(‘h) 0 0 .

Piz(‘]s) 0 0

sz(%) Pgs(%) P33(9'6)

Piz(fhn) Pg}(fllo) Pia(‘]lo) (17
0 0 PgS(qll) Pﬁs(‘]u)
0 0 P33(Q|5) Pgs(q’ls)
0 0

whose anaiytic solution is
(x, 1) = YA Neos(E Jars(ZY s
mnti=epl =a\ar) )¢ 41;\/ (2L

x sin (% (x—L)). (22)

The numerical solution {with #,=1 and 2L =19) is com-
pared with the analytic one, Eq. (22), in Fig. 1. The dis-
crepancies between them are so small that they cannot be
distinguished in Fig. 1.

In order to quantify the discrepancies, we define the
relative error as

1) = \/j"';L(u(x, 1) —ii{x, 1))? dx

(= fulx, 1)] dx » (23)

where u(x, 1) is Eq. (22) and &(x, ) is the numerical solu-
tion. Up to times :=300, the relative errors are list in
Table I. Apparently, £, () <2x 1074 which is negligibie
and less than the error that we demand in the input of an
ODE routine-a Runge-Kutta-Fehlburg integrator.

0.016 |

u(x.t)

0.008

-10 Q 10

The solution of Eq. (2¢}) with the boundary condition Eq. (15) and the initial condition Eq. (21) is presented in this figure: =30 in (a), and

1= 300 in (b). The solid line is the numerical solution, and the square symbols are the analytic solution.
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TABLE I
The Relative Error, Defined in Eq. (23), at Different Times

Times E.a(0)
30 222% 1077
60 8.68x 1076
90 937x10"¢%

120 529x10-*
150 1.84x 104
180 .85 x10~*
210 6.21x10-°%
240 2.57x10°
270 1.81x10°3
300 588 x10°¢

We have also solved Eq. (20) with a few different bound-
ary conditions and initial conditions; the discrepancies
between the numerical solutions and the analytic ones are as
small as that shown in Fig. 1, In addition, we have tested
this algorithm by solving other linear equations, and the
results are always the same as the analytic solutions. The
above example shows that our algorithm is quite reliable,
although it does require that the initial conditions and the
solutions have C,-continuity. In the next section, we shall
show how to apply this algorithm to a more complicated
physical system.

3. A PHYSICAL EXAMPLE

In the study of interfacial dynamics at a first-order phase
transition involving strain as the primary order parameter,
unusual twinning dynamics is found [3]. To study the
effects of the expulsion of the latent heat on the phase trans-
ition, in the heat-wave approximation, we obtain the PDE
system [3, 4],

e, =[6Te—e*+e*—e . +Te,],, (24)

and

| &°T 13T &*T )
0—557+;E—6—f=ﬁ(1+5a)(Tee,). (25)
The boundary conditions are (again x,=—L and
xp=+L)

el+L,1)=0 (26)
e,=}1-,(exx—5Te+e3—e5) at x=+L (27)

and
nNtL,0)="1,, (28}

58i/112/2-12
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and the initial conditions are

e(x,0)=e, exp{ —x?/s?), e(x,00=0. (29)
T(x,0)=T,. aTi,)fj"”:o. (30)

Here e(x, t) and Ti{x, ¢) are the strain and thermal fields,
respectively: 8T = T — T, where T, is the scaled instability
temperature, which has been scaled to be unity; T, is the
initial temperature and the fixed temperature at -the
boundaries; e, and ¢ are constants, and vy is thermal
propagation velocity; I, «, B, and & are other physical
constants. The derivation of the above equations will be
provided elsewhere [4].

To sclve Egs. (24) and (25) with boundary conditions
Egs. (26), (27), and (28) and initial conditions Egs. (29)and
{30) using the algorithm presented in Section 2, we define

w(x, 1) =e(x, t}, wlx, ) =e,(x,1),

wi(x, t)=T(x, 1), wx, 1) =6T(x, r). Gl
ot
Thus, Egs. (24)-(30) can be rewritten as
a—u=F(x, Luu,u U {32)
2 o U Uy B ),
where
u=(u',u% ?, u*Y, F=(F,F%FFYT, (33)
and
Fl =M2,
Fr=[' = T)u' — ') + @) —uy +Tuy]
F¥=ut (34)

xx ;

F4=V‘;{u3 1u4

+ Bt + S(uu'u® + i (u?) + u3u1F2)]}.
The boundary conditions are

u (L, 1)=0,

wW=ul —(T,— T )u' + (u'y — (u')°

(35)
at x=+1L,
wW(+L, ty=T,,
and the initial conditions are
u'(x, 0)=e, exp(—x?/a?), w'(x,0)=0,
(36)
wWx,0)=T,, u*(x,0)=0.

We now expand u'(x, 1) and w’{x, ) in terms of piecewise
ninth-order Hermite polynomials in the spatial approxima-
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tion, and (x, 1} and «*(x, 1) in terms of piecewise fifth-
order Hermite polynomials, respectively. To be specific, the
trial soiution is expanded in the series

w0=% ¥ cjn P
uz(xf=§ ; Ci(1) Po(x),

S (37)
W 0= L ¥ Chl) Pt

PR
wix, )= Z Cl(1) PyoAx),

where we impose that S(M— 1)=3(M"—1), and P;(x) are
piecewise fifth-order Hermite polynomials, which are shown
in Appendix B. Furthermore, for »' and u? x,=-1L,
X, 1 =X+ h,, and h,=2L/(M — 1); likewise, for u* and «*,
=—L, xj, =x]+h], and h{=2L/(M'—1). For con-
venience, we choose 2L=w{M—1) and M=4+6m,
where m’ is an arbitrary positive integer, and w is a tuning
parameter which controls the distances between knots.
From the boundary conditions Eq. (35), we have

Cllt)=Ch(1)=0, CH(N=CL (=0, (38)
CEO(I)=C}2[I)—(TO— Tc) Cio(f)
+(C (1)’ —(C (D), (39)
Ci»fo([) = C}uz(f)“ (T,—T,) C}m}(t)
+(C yol1))* — (Chyol1)), (40}
2
Ll )~ [T, 1)+ 3(C o)
= 5(C ()1 Ciola), (41)
dc?,
Ttﬂm= Cia(t) = [(T,—T,) + 3(C (1))
= 5(C pol)*] Crolt), (42)
Cll)=Cip(n)=T,, Cllt)=Cl(t)=0. (43)
From the dcfinition Equation (31), we also have
dCiin aci.(y
—=Cin, —oe=Ch. (@)

Further, substituting Eq. (37) into Eq. (32) at x=g,, gives
us

‘£ dC? dC?
P? Yp
jgz dt 1( m) +JZO d[ 2(9»:)
dci
= Fz(qnﬂ t! ) d 10 Pgl(qm) (45)

YAO AND GOODING

form=1, ., 5;

Z Z "P9 (@) =Fq,,. 1, ..) (46)
i=2 j=0
form=6,..,5M-9;
& 4C?, .
_ZL——fﬁvﬂiPzM_lﬁqm)
iz
d M
Z jPM(qM)_FZ(Qm’rs )
dC?m) 0
7 Pore (dm) (47)

form=5M—8, .., 5SM —4, where dC?3,/dr and dC3,,/dr are
given by Eqgs. (41) and (42). Similarly, C?.j. satisfics

dct,. C;J

Z U Psl(‘gm + Z P5 ( m)de(q:ns I )
=1 -0
(48)
form=1,23;
Z Z Ay Prlqm) =F g, 1, ) (49}
it=2 =0
form=4, .. 5M—7;
2 dCh, .,
(M 1)
2 dcCH
+ Z d:“f Pif’j’(qm):Fd(Qma [a '") (50)
=0
form=5M—6,5M—5,5M—4.
The above system can be written in the simple form
dc*
s (%) G*1, €1, C2, ¢, CY)
with C*0)=C* (51)

where k=1,2,3,4 and Cfﬁ holds the initial values of the
coefficients. For k=1 and 2,

= [Clos s Chas wr Chizs Chrss Cligas Chprs Chiro1 s
(52)
for k=3 and 4,
[CIO’ Ci;l’ Cl;25 ey C.ﬁl'l’ C.ﬁd?’ CL'O]T’
(53)
o/ and /3 are unit matrices; .«¢> reads as
1 \
1
7= o , (54)
1
1y

and
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with a bandwidth of 10. Likewise,

A=

0

P?|(‘I|) Pgl(ql)
P?:(‘Iz) Pgl(‘h)
P?](‘Ia) Pgl(‘h)

0

0
0
0

0

0

0
0
0
0

0
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(P2(a) P Pigy)

PLgs) Phqs) Po(gs)

sz(‘]t)
sz(QS)
0 sz(%)
0 sz(‘ho)
0 0
0 0
0 ]
sz(?n) sz(‘h)
sz(‘h) P?z(‘]z)
sz(‘]a) sz(‘h)
Pf)a(%) P?z(‘h)
sz(%) P?z(%)
sz(%) P?z(%)
0 0
0 0
0 0

-
Piq)) 0 0 -
Pilds) 0 0
PZz(%) ng(%) Pi;(%)
Pi(qi0) sz(‘]m) e Pi(gi0)

0 ng(qll) P33(‘In)
0 ng(qw) P33(Q15)
\

sz(‘h) 0 0 0

sz(‘lz) 0 0 0

sz(‘h) 0 0 0

sz(‘h) Pcin(‘h) Pfa(%) Pgs(‘h)

Piz(?s) an(‘]s) P?a(‘]s) P§3(‘15)

sz(qa) Pﬁ;(q(,) Pf3(‘]6) Pia(%)

0 P(Sn(%') P?z(‘h) P§3(‘I7)
Ptj)s(%) P?s(qg) P;(%)
0 ng(qg) P?a(qg) P§3(‘19)
0
1

0.09
X 0.06
=
Ll
0.03 )
-120  —60 o B0 120
x
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(55)

(56)

FIG. 2. The twinning solution of Egs. {24) and (25) with the boundary conditions Eqs. (26), (27}, and (28) and the initiat conditions Eqgs. {29) and
(30) for both strain field e(x, #) (a) and thermal field T(x, ¢} (b} at different times. The short dash, short dash-long dash, long dash, and solid lines
correspond to time =0, 80, 160, and 240, respectively. The involved parameters &y, o, 8, 6, ., ¥y, and Ty are [0.5(1 + /1 ~46T)17,10,0.1, 1, 1, 2,

and 1.04, respectively.
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e(x,t)

YAO AND GOODING

0.153

0.145

ST(xt)

0.135

—-120 —560 0 60 120

FIG. 3. The nontwinning solution of Eqgs. (24) and (25) with the same houndary conditions and initial conditions as Fig. 2 for both strain field e(x, 1)
(2} and thermal field 7{x, ¢) (b) at different times. The short dash, short dash-long dash, long dash, and solid lines correspond to time ¢ = 0, 80, 160,
and 240, respectively, The involved parameters are the same as Fig_ 2. except that T, =1.138.

with a bandwidth of six. The vector G* follows:

G1=C2, G3=C4, (5‘7)
Gi=CL—-[UT,—-T)+3(C))’
—5(Cl)*1CL,, (58)
GéM = szuz —[(T,— T.)+ 3(Cfluo)2
= 5(C 3olt)* 1 C o (59
Gi=G%, ,=0; (60)
fori=3,..,7,
G?=F2(‘1i—2)“G%P?o(‘L‘72); (61)
fori=5M—6, .. 5M -2,
G? = Fz(‘ls—z) —GﬁuPim(q.-_z); {62)
fori=8, .., 5M—-17,
Gi=Fq,_»). (63)
G* satisfies
Gi=G1,,.=0, (64)
andfori=2,..,3M'—1,
Gl=F%q,_)). (65)

The initial values of C* are given by Eq. (13). Thus, we have
reduced the PDEs to ODEs which can be solved by using
any suitable ODE routine. Thus, so long as we know the
parameters in the model, the problem becomes accessible.
Here we only briefly report some results of this model
with the following involved parameters: L=120, e,=

[0.5(1 +/1—46T)]"2, 6=10, =01, =1, w=15,

Vry=2, and y=1 (the rationale for some of these choices
may be found in [3,4]). Figures 2 and 3 show the con-
figurations of strain field and thermal field at different times
for T,=1.04 and 1.138, respectively. These results indicate
that for the same initial strain but differential initial tem-
peratures, the system evolves to different states—twinning
and nontwinning states [3 ]. The details of this model, and
the underlying physics contained in similar dynamics, will
be discussed elsewhere [4].

4. CONCLUSION

We have proposed a variant method of lines to solve
systems of nonlinear PDEs in 1 + 1 dimensions which con-
tain fourth-order spatial derivatives and nonlinear bound-
ary conditions. We tested this method by solving a linear
PDE system with a number of different initial conditions
and linear boundary conditions. When compared with the
analytical solutions, the numerical results are very accurate,
and the relative errors are smaller than those that we
demand in the input of an ODE routine. Therefore, we
believe this method is quite reliable. Then, we used this
method to investigate the physical system in which a strain
field is coupled with the thermal field, both having
propagating wave fronts, and the results are quite encourag-
ing.

In general, our algorithm can be modified to solve dif-
ferent types of PDE systems. For instance, if a PDE system
involves nth-order spatial derivatives and if its solution and
initial conditions have €, -continuity, ons can construct
piecewise {2#n + 1)th-order Hermite polynomials in a similar
manner to those presented in Appendix B. Thus, the spatial
approximation of u(x, ¢#) can be expanded in terms of
piecewise (2n + 1)th-order Hermite polynomials, and the
algorithm presented in Section 2 can be implemented for
this system.

We realize that our variant method of lines has some
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limitations: if the solution cannot be approximately fit by
piecewise ninth-order Hermite polynomials at any instant of
time, the method is invalid. For instance, if the initial condi-
tions do not have C,-continuity, the coefficient vector C;(0)
in Eq. (13) cannot be properly represented, and thus the
solution at subsequent times cannot be obtained.

APPENDIX A

The formula of fourth derivative in the difference—
quotient approximation is

3*ulx, 1=0)

ax 1 (u(x+2h,0)—4u(x+ A, 0)

Th
+ 6u(x, 0)—du{x— A, 0)

+u{x—2h,0)), (66)
where we assume that w and F only have one component.
Within this approximation the total absolute error, trunca-
tion plus rounding, is bounded by

6

E(t=0)< 16 ju(x, 0) %+ gﬁu(x,()) W {6T)

@

at time t =0, where g, is the relative error for u(x, t)at t=0
and it is the machine epsilon if we start to evolve Eq. (4)
from r=0. If we differentiate £,,.(r =0) with respect to A
and set the result equal to zero, the value of # is

u(x, 0 1/6
h=2 yvzu(x,O)so/”(—xﬁ) : (68)
Jx
and the minimized total absolute error at t =0 1is
U u(x, OYP7 | 0%(x, 03(%7 |
E <- o 69
abs(O) 4 3 6x6 So ( )

Assuming that |u{x, )| = |0%(x, 1)/x®| (eg, u(x, t)=
F(#) sin(x), f(1} cos(x), or f(t) exp(x)), we obtain the rule of
thumb

(70)

where E_,(0) is the relative error for u . (x, t)at ¢ = 0. If we
consider the inaccuracy in the calculation of u (x, 0),
u,(x, 0), and u . (x, 0), the relative error of u,(x, t = 0) will

be order of £, Therefore, when time reaches 7 =1, the

relative error of u(x, t = 1) will be order of £/*. Accordingly,
1 137

Eglt=1)= / (71)

4x3nte
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Using the same procedure, by induction it can be shown
that

1y3n+1
Er)

-Ert‘.l{t='n)z (72)

4x 37

Usually, &, > 10" '%; therefore, E,(r=5)> 10%. Besides
the difficulty of changing h at different times, the relative
error may be too large to obtain a reliable solution in many
cases.

APPENDIX B

B.1. Piecewise ninth-order Hermite Polynomials

In this appendix, we first define P3,(x) and then recur-
sively define P3,(x), P%(x), PJ(x), and Pg(x). Let
h,=x,,— x;. The polynomials P§,(x), which obey

m

mpgi(x.'):anmém 0sm<d, (73)
are given by, fori=1,
L{x*x P ix,—x), x €x<x
P?‘[ =< 4! h‘f ! 2 : 1 2 {74)
0’ Xy X KX,
fori=2,3.,n—1,
(0’ xlsx<xi711
1
s (x—x, ) (x—x)%, X,_ €x<X,,
P?li(x)=< -1 !
4|h5(x,+,—x)5 (x —x)%, X, € X< Xa s
\0’ )C,-+1-.<_x€x,,;
(75}
fori=n,
0 xl ‘<-X<xn—1=
Pl(x)=¢ 1
" (x_xn— )5 ('x—xn}4 X — SXEX,.
4 hd ! 1 =
(76)
The polynomials P3,(x) satisfying
7
— Pu(x)=38,364, O<m=4, {77)

dx™
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take the foliowing forms: for i =1,
1 20
3r—hs(x~x1)3 (xz—x)s-}-—Pz, (x),
P(x)=4""
3(%) X Ex<x,, (78)
0: xZSx“‘(—xn;
fori=2,3 ..,n—1,
0, X, Sx<x;_y,
1 20
o (x=x, ) (x_xi)3__ Pg,-(x)s
A, ! oy
X <X,,
P3(x)= FoaSESA (79)
1 20
3!’15(—"”1_)‘)5()‘—)‘7) +-- Pi;( ),
XXX, 40,
09 Xit1 \X<x
fori=n,
0, X €£X<Xx,_,,
1 20
9 _ _ 5 _ L 9
P3n(x)_ 3’ hi . {x xn—l) (X xn) hn,1 P4n(x):
Xy 1R XK X,
(80)
The polynomials P, (x}) satisfying
dm
ﬁPQ (x}=06,,204, 0=m<4, (81}

read as, for i=1,

1 5
rh:lg(x_xl)z (xz—x)5+h—1P§,(x)
Px)= 120 (82)
" - h2 Po(x), X Ex<X,,
0, Xy EXEX,;
fori=2,3,..,n—1,
0, X €x<x_y,
1
2'h5 (x_xi—l)s(x_xr')z
i—1
15 120
h 3:( ) h2 Pzr( ]’ xi—]‘*<-x<x,‘;
Pym={ | M -
! 1
W(xi+l_x)5 (x_xr')2
15 120
o PL(x)— 71’9( x), XEX<X
03 xi+1$x€xn;

(83)

for i=n,
(0, X EX<X,_,
1
ﬂs——(x—xn_l)s(x*xn)2
Pax)={ 7 M (34)
15 P9 (x)— 120 P (x)
h,r_ . n hi_ l 4n »
\ x”,1-<._x€x”-
The polynomials P?.{(x) obeying
dxm P?i(x)=5m15h" Osm‘<~49 (85)
are given by
1 s
(= x)(x; — x)
1
10 60 240
Pi=q P =53 PU) + 55 Ph(),
X, €X<X,,
\ 0, X8 XEX,,
(86)
fori=1;
(0, x;<x<x;_,,
PER (Y“xi—l)s(x—xf)
i—1
10 60 240
P9 9
—h o P = P — o P
X, €x<X;,
Pin=¢ !
Es(xml_x)s (x—x;)
10 60 240
+h P;l( ) hz P?l( ) h3 P?h(x-)’
Xigx <X,y
0= x1+l )C<an
(87)
fori=2,3, ... n—1,
70, X €X<X,_1,
1
hs (x_x"71)5 (x_xn)
n—1
P (x =< 10 60 (38
) — P P Y
n—1 a—1
240
\ 7EP3n(x)9 X, 1\<_x‘-§.x",
fori=n.
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The polynomials Py, (x), confined by fori=1;
0, X €x<X;_y,
4™ po 0<m<4 (89 s_ 5 po
ﬁpm(’c) 0 madiss sms4, ) h?—x (x—x,_) _K Pi(x)
20 60 240
_h Pg!(‘ ) h?_ Pgl( ) h4 Pgr( }
obey i1 i—2 i—1
bl s' < is
[ 5 Pala=q Tt 5)C
— P —(x.,, —xV+=P
h?(x ) + h] ( ) hS (x1+l x) +]‘ lr(x]
20 60 20 120
Pg _Pg -= G 9 _P9
Pgl(x)=< ]2 "1(x)+ I(Y) (90) P { ) P}:(x)+ h4 ( )
120 x,-éx<x,-
“h4 P?u( » X €X<Xx,, 0, ;+1-<~X<+xln‘1§
L0, x<x<a,, (91)
1.2 0.26
a b
= <
;‘Jc" 0.6 - ;‘_’u_: 0.00
[a n.
0.0 T T T T -0.26 T ] T T 1
-5 -3 -1 1 3 5 -5 -3 -1 1 3 5
X X
36 2.6
c e
. o
~ %
~ 18 ~ 00
28 iy
[l [a
0.0 T T T T ~2.6 T T T T
-5 -3 -1 1 3 5 -5 -3 -1 1 3 5
X X
1.0
5
A 05 A
No
Ué.j'
0.0 T T T T
-5 -3 -1 1 3 5
X

FIG. 4. Pi(x) (2), Pi4(x) (b), P5(x) (c), Pi(x) (d), and Pi(x) versus x are plotied for n=11 and h, = 1.
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fori=2,3,...n—1;

70, X E€Xx<X, s
h;ﬁl(x xo 1)’ ‘;T,,Sj” )
P = P P
rn—1 n—1
\ hm PoL(x), ey Sx<xn

fori=n.
Pio(x) (2), P34(x) (), Pis(x) (e), Piglx) (d), and Pilx)
verss x are plotted in Fig. 4 forn=11 and h,= 1.

B.2. Piecewise Fifth-Order Hermite Polynomials

Similar to nine-order piecewise Hermite polynomials,
fifth-order piecewise Hermite polynomials can be written as
follows. As in Appendix B.1, #;=x,,,— x;. The polyno-
mials P3 (x) satisfying

2o Pl =026, 0<m<2, (93)
read as
1 y s
el — X X,—Xx), X;5X<X,,
0, X2 SXEX,;
fori=1;
(0, X EX<X;_y,
1 4
W(x_xr'—l)s (x—x)%, x._;<x<x;,
ng(x)=< ‘1 -l
2| h3 ('xl'-f-l_'x'-)3 (x—xl')21 Xj~<..x<xi+l,
\0, X1 XS X,
(95)
fori=23, .,n—1;
0 X RX <Xy
Pi(x)=¢ 1 ,
" (x_xn— )3 (x_xn} Xg— Sxéx,,,
20h ! !
(96)
fori=n.
The polynomials P3,(x) constrained by
EPII(XI) 5m15!1’ Oﬁmgz, (97)

YAO AND GOODING

satisfy
1 3, 6
ﬁ(x—xl)(xz—x) +i._P2‘ (x),
P5 x)= 1
“(r} XX <Xy, 98)
0, XK XK X,
fori=1;
0, X X <Xy,
hJ (xer'fl)s(x_xi)___dpgl(x)a
i1 i—1
< .
P?!(X): x,_l‘\x<x,, (99)
1 6
h_?('xi+1_x)3( r)+hP (X),
x,-£x<x,-+!,
Os 1+l€x€xm
fori=2,3,..,n—1;
0, X, sx<x,_q,
)= { e (e ) (X %,) — e P (x)
lrr hi_[ n—1 - n hnfj 2n
Xp_1SXEX
(100)
fori=n.
The polynomials P}, (x)} confined by
dh! 5
d m P()r(xr')_amﬂé.lh 0-<.’7-!-<\2, (101)
take the form of
1 3 6
?(xz—x)3+h—Pf, (x)s thgl( )
P{x)= ! 102
m(x) x, €X<x,, ( )
0, X, €x<€x,;
fori=1;
0, X €X<x_,,
l 3 3 5 5
h?75(x xifl) —h—ij;P]f(x)—hlz ‘Pzr(x)
i "-<-.-' 2]
P(x)= Tim i SES (103)
1 3 6
E(xf+1_x)3+ypfi( x}— hZP;( X},

Ximx<x,,,

0, X SXsX,
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1.2 0.26
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o 06 4 % 0.00
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FIG. 5. Pi,(x) (a), P3s(x} (b), and P3,(x) (c) versus x are plotted for n=11 and 4, =1.
fori=2,3,..,n—-1; REFERENCES
0, X1 E€EX<X,_y, .
I 3 6 . W, H, Press, B. P. Flannery, 5. A. Teukolsky, and W. T. Vetterling,
P(S)”(X) — - (x—x,_ 1)3 _ P?n(x) —— Pi,,(X), Numerical Recipes (Cambridge U.mv. Press, Cambridge, MA, 1?86).
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X, 1 <x<x,, Mathematical Applications, Vol. 2, Version 1.0, (Inst. Math. Statist.,
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fori=n.

P(x) (), Pis(x) (b), and P3.(x) (c) versus x are plotted
in Fig. 5forun=11 and h,=1.
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